Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 7(12): 1556-1570, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36732621

RESUMO

Lateral-flow assays (LFAs) are rapid and inexpensive, yet they are nearly 1,000-fold less sensitive than laboratory-based tests. Here we show that plasmonically active antibody-conjugated fluorescent gold nanorods can make conventional LFAs ultrasensitive. With sample-to-answer times within 20 min, plasmonically enhanced LFAs read out via a standard benchtop fluorescence scanner attained about 30-fold improvements in dynamic range and in detection limits over 4-h-long gold-standard enzyme-linked immunosorbent assays, and achieved 95% clinical sensitivity and 100% specificity for antibodies in plasma and for antigens in nasopharyngeal swabs from individuals with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Comparable improvements in the assay's performance can also be achieved via an inexpensive portable scanner, as we show for the detection of interleukin-6 in human serum samples and of the nucleocapsid protein of SARS-CoV-2 in nasopharyngeal samples. Plasmonically enhanced LFAs outperform standard laboratory tests in sensitivity, speed, dynamic range, ease of use and cost, and may provide advantages in point-of-care diagnostics.


Assuntos
Imunoconjugados , Nanopartículas , Humanos , SARS-CoV-2 , Ensaio de Imunoadsorção Enzimática , Anticorpos , Testes Imediatos
2.
Biophys J ; 119(2): 265-273, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32621863

RESUMO

Analysis of fluctuations arising as fluorescent particles pass through a focused laser beam has enabled quantitative characterization of a broad range of molecular kinetic processes. Two key mathematical frameworks that have enabled these quantifications are fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis. Although these frameworks are effective and accurate when the focused laser beam is well approximated by an infinite Gaussian beam with a waist that is small compared to the size of the region over which the fluorescent particles can diffuse, they cannot be applied to situations in which this region is bounded at the nanoscale. We therefore derived general forms of the FCS and PCH frameworks for bounded systems. The finite-domain form of FCS differs from the classical form in its boundary and initial conditions and requires development of a new Fourier space solution for fitting data. Our finite-domain FCS predicts simulated data accurately and reduces to a previous model for the special case when the system is much larger than the Gaussian beam and can be considered to be infinite. We also derived the PCH form for the bounded systems. Our approach enables estimation of the concentration of diffusing fluorophores within a finite domain for the first time, to our knowledge. The method opens the possibility of quantification of kinetics in several systems for which this has never been possible.


Assuntos
Corantes Fluorescentes , Fótons , Difusão , Distribuição Normal , Espectrometria de Fluorescência
3.
Proc Natl Acad Sci U S A ; 117(25): 14158-14167, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513738

RESUMO

Eukaryotic N-degron pathways are proteolytic systems whose unifying feature is their ability to recognize proteins containing N-terminal (Nt) degradation signals called N-degrons, and to target these proteins for degradation by the 26S proteasome or autophagy. GID4, a subunit of the GID ubiquitin ligase, is the main recognition component of the proline (Pro)/N-degron pathway. GID4 targets proteins through their Nt-Pro residue or a Pro at position 2, in the presence of specific downstream sequence motifs. Here we show that human GID4 can also recognize hydrophobic Nt-residues other than Pro. One example is the sequence Nt-IGLW, bearing Nt-Ile. Nt-IGLW binds to wild-type human GID4 with a Kd of 16 µM, whereas the otherwise identical Nt-Pro-bearing sequence PGLW binds to GID4 more tightly, with a Kd of 1.9 µM. Despite this difference in affinities of GID4 for Nt-IGLW vs. Nt-PGLW, we found that the GID4-mediated Pro/N-degron pathway of the yeast Saccharomyces cerevisiae can target an Nt-IGLW-bearing protein for rapid degradation. We solved crystal structures of human GID4 bound to a peptide bearing Nt-Ile or Nt-Val. We also altered specific residues of human GID4 and measured the affinities of resulting mutant GID4s for Nt-IGLW and Nt-PGLW, thereby determining relative contributions of specific GID4 residues to the GID4-mediated recognition of Nt-Pro vs. Nt-residues other than Pro. These and related results advance the understanding of targeting by the Pro/N-degron pathway and greatly expand the substrate recognition range of the GID ubiquitin ligase in both human and yeast cells.


Assuntos
Prolina/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/química , Proteínas de Transporte Vesicular/química , Humanos , Modelos Moleculares , Prolina/metabolismo , Complexo de Endopeptidases do Proteassoma , Conformação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
Biochemistry ; 59(4): 582-593, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31895557

RESUMO

Gid4, a subunit of the ubiquitin ligase GID, is the recognition component of the Pro/N-degron pathway. Gid4 targets proteins in particular through their N-terminal (Nt) proline (Pro) residue. In Saccharomyces cerevisiae and other Saccharomyces yeasts, the gluconeogenic enzymes Fbp1, Icl1, and Mdh2 bear Nt-Pro and are conditionally destroyed by the Pro/N-degron pathway. However, in mammals and in many non-Saccharomyces yeasts, for example, in Kluyveromyces lactis, these enzymes lack Nt-Pro. We used K. lactis to explore evolution of the Pro/N-degron pathway. One question to be addressed was whether the presence of non-Pro Nt residues in K. lactis Fbp1, Icl1, and Mdh2 was accompanied, on evolutionary time scales (S. cerevisiae and K. lactis diverged ∼150 million years ago), by a changed specificity of the Gid4 N-recognin. We used yeast-based two-hybrid binding assays and protein-degradation assays to show that the non-Pro (Ala) Nt residue of K. lactis Fbp1 makes this enzyme long-lived in K. lactis. We also found that the replacement, through mutagenesis, of Nt-Ala and the next three residues of K. lactis Fbp1 with the four-residue Nt-PTLV sequence of S. cerevisiae Fbp1 sufficed to make the resulting "hybrid" Fbp1 a short-lived substrate of Gid4 in K. lactis. We consider a blend of quasi-neutral genetic drift and natural selection that can account for these and related results. To the best of our knowledge, this work is the first study of the ubiquitin system in K. lactis, including development of the first protein-degradation assay (based on the antibiotic blasticidin) suitable for use with this organism.


Assuntos
Kluyveromyces/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Evolução Molecular , Frutose-Bifosfatase/química , Frutose-Bifosfatase/metabolismo , Gluconeogênese/genética , Kluyveromyces/enzimologia , Kluyveromyces/genética , Malato Desidrogenase/metabolismo , Mutagênese , Prolina/química , Proteólise , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia
5.
Proc Natl Acad Sci U S A ; 116(32): 15914-15923, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31337681

RESUMO

In eukaryotes, N-degron pathways (formerly "N-end rule pathways") comprise a set of proteolytic systems whose unifying feature is their ability to recognize proteins containing N-terminal degradation signals called N-degrons, thereby causing degradation of these proteins by the 26S proteasome or autophagy. Gid4, a subunit of the GID ubiquitin ligase in the yeast Saccharomyces cerevisiae, is the recognition component (N-recognin) of the GID-mediated Pro/N-degron pathway. Gid4 targets proteins by recognizing their N-terminal Pro residues or a Pro at position 2, in the presence of distinct adjoining sequence motifs. Under conditions of low or absent glucose, cells make it through gluconeogenesis. When S. cerevisiae grows on a nonfermentable carbon source, its gluconeogenic enzymes Fbp1, Icl1, Mdh2, and Pck1 are expressed and long-lived. Transition to a medium containing glucose inhibits the synthesis of these enzymes and induces their degradation by the Gid4-dependent Pro/N-degron pathway. While studying yeast Gid4, we identified a similar but uncharacterized yeast protein (YGR066C), which we named Gid10. A screen for N-terminal peptide sequences that can bind to Gid10 showed that substrate specificities of Gid10 and Gid4 overlap but are not identical. Gid10 is not expressed under usual (unstressful) growth conditions, but is induced upon starvation or osmotic stresses. Using protein binding analyses and degradation assays with substrates of GID, we show that Gid10 can function as a specific N-recognin of the Pro/N-degron pathway.


Assuntos
Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Duplicação Gênica , Genoma Fúngico , Gluconeogênese , Pressão Osmótica , Ligação Proteica , Proteólise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Especificidade por Substrato
6.
Biophys J ; 112(11): 2367-2376, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28591609

RESUMO

Measurement of the sizes of nanoscopic particles is a difficult challenge, especially in two-dimensional systems such as cell membranes. We have extended inverse fluorescence correlation spectroscopy (iFCS) to endow it with unique advantages for measuring particle size from the nano- to the microscale. We have augmented iFCS with an analysis of moments of fluorescence fluctuations and used it to measure stages of phase separation in model lipid bilayer membranes. We observed two different pathways for the growth of phase domains. In one, nanoscopic gel domains appeared first and then gradually grew to micrometer size. In the other, the domains reached micrometer size quickly, and their number gradually increased. These measurements demonstrate the value of iFCS measurements through their ability, to our knowledge, to provide new information about the mechanism of lipid phase separation and potentially about the physical basis of naturally occurring nanodomains such as lipid rafts.


Assuntos
Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Nanoestruturas/química , Espectrometria de Fluorescência , Lipossomas Unilamelares/química , Calibragem , Difusão , Cinética , Microscopia de Fluorescência , Fótons , Espectrometria de Fluorescência/métodos
7.
Yeast ; 33(1): 21-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26537311

RESUMO

The budding yeast Saccharomyces cerevisiae is able to take up large quantities of amino acids in the form of di- and tripeptides via a short peptide transporter, Ptr2p. It is known that PTR2 can be induced by certain peptides and amino acids, and the mechanisms governing this upregulation are understood at the molecular level. We describe two new opposing mechanisms of regulation that emphasize potential toxicity of amino acids: the first is upregulation of PTR2 in a population of cells, caused by amino acid secretion that accompanies peptide uptake; the second is loss of Ptr2p activity, due to transporter internalization following peptide uptake. Our findings emphasize the importance of proper amino acid balance in the cell and extend understanding of peptide import regulation in yeast.


Assuntos
Aminoácidos/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Técnicas de Cultura Celular por Lotes/métodos , Transporte Biológico , Citoplasma/metabolismo , Citometria de Fluxo , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulação para Cima
8.
Biochemistry ; 54(10): 1886-96, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25697574

RESUMO

RNA hairpins are ubiquitous structural elements in biological RNAs, where they have the potential to regulate RNA folding and interactions with other molecules. There are established methods for predicting the thermodynamic stability of an RNA hairpin, but there are still relatively few detailed examinations of the kinetics of folding. Nonetheless, several recent studies indicate that hairpin folding does not proceed via a simple two-state model. Here, we monitor fluorescence from hairpins constructed as molecular beacons in ensemble, fluorescence correlation spectroscopy, and stopped-flow experiments to describe the folding of RNA hairpins with long (15 nucleotide) loops. Our results show that folding of these hairpins occurs through more than two states and that the mechanism of folding includes a fast intermediate phase observed on the tens of microseconds time scale and a slow phase, attributed to formation of the native folded hairpin loop and stem, observed on the milliseconds time scale. The composition of the RNA loop determines the time scale of intermediate and native folded states. Hairpins with a polyuracil loop sequence exhibit slower relaxation of the intermediate state and faster relaxation of the native folded state when compared to that of hairpins with cytosine or adenine in the loop. We hypothesize this composition dependence could be attributed to nucleobase stacking in cytosine and adenine containing regions of the loop, which would be absent in hairpins containing polyuracil loops. Such base stacking could destabilize the intermediate folds, thereby speeding the relaxation of the intermediate relative to similar sized hairpins with no base stacking in the loop. Likewise, the lower intermediate stability could prolong the relaxation of the native folded state.


Assuntos
Sequências Repetidas Invertidas , Modelos Moleculares , Conformação de Ácido Nucleico , RNA/química , RNA/genética
9.
Biophys J ; 103(5): 898-906, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23009839

RESUMO

The theory of photon count histogram (PCH) analysis describes the distribution of fluorescence fluctuation amplitudes due to populations of fluorophores diffusing through a focused laser beam and provides a rigorous framework through which the brightnesses and concentrations of the fluorophores can be determined. In practice, however, the brightnesses and concentrations of only a few components can be identified. Brightnesses and concentrations are determined by a nonlinear least-squares fit of a theoretical model to the experimental PCH derived from a record of fluorescence intensity fluctuations. The χ(2) hypersurface in the neighborhood of the optimum parameter set can have varying degrees of curvature, due to the intrinsic curvature of the model, the specific parameter values of the system under study, and the relative noise in the data. Because of this varying curvature, parameters estimated from the least-squares analysis have varying degrees of uncertainty associated with them. There are several methods for assigning confidence intervals to the parameters, but these methods have different efficacies for PCH data. Here, we evaluate several approaches to confidence interval estimation for PCH data, including asymptotic standard error, likelihood joint-confidence region, likelihood confidence intervals, skew-corrected and accelerated bootstrap (BCa), and Monte Carlo residual resampling methods. We study these with a model two-dimensional membrane system for simplicity, but the principles are applicable as well to fluorophores diffusing in three-dimensional solution. Using simulated fluorescence fluctuation data, we find the BCa method to be particularly well-suited for estimating confidence intervals in PCH analysis, and several other methods to be less so. Using the BCa method and additional simulated fluctuation data, we find that confidence intervals can be reduced dramatically for a specific non-Gaussian beam profile.


Assuntos
Membrana Celular/química , Fótons , Difusão , Corantes Fluorescentes/química , Funções Verossimilhança , Método de Monte Carlo , Espectrometria de Fluorescência
10.
Phys Chem Chem Phys ; 12(14): 3542-9, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20336253

RESUMO

We propose protein PTB1 : 4W as a good candidate for engineering into a downhill folder. PTB1 : 4W has a probe-dependent thermal unfolding curve and sub-millisecond T-jump relaxation kinetics on more than one time scale. Its refolding rate in denaturant is a non-linear function of denaturant concentration (curved chevron plot). Yet at high denaturant concentration its unfolding is probe-independent, and the folding kinetics can be fitted to a single exponential decay. The domain appears to fold via a mechanism between downhill folding and activated folding over several small barriers, and when denaturant is added, one of these barriers greatly increases and simplifies the observed folding to apparent two-state kinetics. We predict the simplest free energy function consistent with the thermal denaturation and kinetics experiments by using the singular value Smoluchowski dynamics (SVSD) model. PTB1 : 4W is a natural 'missing link' between downhill and activated folding. We suggest mutations that could move the protein into the downhill folding limit.


Assuntos
Dobramento de Proteína , Proteínas/química , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular
11.
J Phys Chem B ; 113(47): 15629-38, 2009 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19877707

RESUMO

Analysis of high-order correlations in fluorescence fluctuation spectroscopy was developed in the late 1980s but since then has been replaced by alternative brightness analysis methods. However, high-order correlation has important advantages in many experiments. We present a new cumulant-based formalism of high-order correlation that greatly simplifies data analysis. The new formalism is used to derive general expressions for variance of high-order correlations that show good agreement with experiment in a model system of fluorescently labeled DNA oligomers. A simulation of binary systems in which both diffusion time and brightness are varied illustrates clearly that high-order analysis has better sensitivity to brightness than fluorescence correlation spectroscopy (FCS). These results have implications for analysis of isomerization reactions and dual-beam FCS with flow. We also demonstrate that high-order correlations can detect photobleaching in the observation volume. The application of this formalism to many FCS-based experiments allows more accurate analysis in addition to describing more molecular parameters.


Assuntos
Espectrometria de Fluorescência/métodos , Algoritmos , DNA/química , Difusão , Corantes Fluorescentes/química , Fotodegradação , Rodaminas/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...